X
 

Standalone and system-level perspectives on hydrogen-based sustainable aviation fuel pathways for Denmark

Hamza Abid, Iva Ridjan Skov, Brian Vad Mathiesen, Poul Alberg Østegaard
Energy   FEATURED BOOK
Aviation is one of the most challenging sectors to electrify directly due to its high energy density demands. Hydrogen offers a pathway for indirect electrification in such sectors, enabling sustainable aviation fuels (SAF) production when combined with a carbon source. SAF produced via methanol or Fischer-Tropsch (FT) synthesis (e-SAF) has higher volumetric density than hydrogen, remains liquid under standard conditions, and can be used as a direct drop-in fuel. Certain FT-based e-SAF pathways are already certified for use in blends, enhancing their appeal for sustainable aviation. This study evaluates e-SAF pathways in terms of resource efficiency and costs for different carbon sources. The results from both a standalone and system-level perspective indicate that biomass gasification-sourced carbon is the most energy-efficient pathway given biomass availability. For point-source and direct air capture pathways, electricity costs for renewable hydrogen dominate the overall costs, comprising about 70 % of total e-SAF costs. Given cheap renewable electricity and by-product revenues, e-SAF can achieve price levels of 0.5–1.1 €/litre, which is cost-competitive with their fossil-based counterparts. A breakeven electricity price of 9–29 €/MWh is needed for e-SAF made via a point source-based CO2 pathway, compared with a moderate aviation fossil fuel price of 0.5 €/litre.
Sustainable aviation fuel; E-SAF; Power-to-liquid; Energy system analysis; Renewable energy system
Share this
 Back